Location	Source (with well depth where appropriate	Date sampled	Ana- lyst			Milligrams per litre (upper number) and milliequivalents per litre (lower number) 1/									Specific		Factors affecting suitability					
				p	ature	iron	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na) plus potas- sium (K) //	Bicar- bonate (HCO ₃)	ate	Sul- fate (SO ₄)	ride	trate	Dis- solved solids 5/	Hard- ness as CaCO	conduct- ance (micro- mhos per cm at 25°C)	pH (lab.	Sa- lin- ity haz-		So- dium has- ard	
								PACKA	RD VALL	EY AND	WHITE	PLAINS								×		
23/28-29dc	Well (44 ft)	10- 7-70	G	58	14.5	·	140 6.99		4,200 182.39	207	0.00		6,600 186.19			410	20,500	7.6	U	90	VH	S
24/29-26cd	Humboldt River drain	5- 1-72	G G	58	14.5	·	50 2.50	30 2.50	370 16.05	361 5.92	5 0.17	220 4.58	370 10.38		-	250	2,090	8.5	H	10	H	S
tion and the second		6-20-72	. G	64	18.0)	48 2.40	63 5.19	740 32.08	388	0.00	9.16	860 24.15			380	3,990	8.3	VH	20	VH	S
		2-28-73	G	50	10.0		82 4.09	110 8.70	1,700 75.16	202 3.31	12	930 19.36	2,300 64.88		7	640	8,000	8.6	U	30	VI	8
27/33-24ccd	Well	10- 8-70	G				110	40 3.30	100	189	0.00	110 2.29	280 7.90			440	1,450	7.9	M	2.1	L	S
28/34-31db	Spring	10- 8-70	G	63	17.0		66 3.29	14 1.11	50 2.18	134	0.00	75 1.56	100 2.82	-	-	220	692	7.6	L	1.5	L	S

^{1.} Milligrams per liter and milliequivalents per liter are metric units of measure that are virtually identical to parts per million and equivalents per million, respectively, for all waters having a specific conductance less than about 10,000 micromhos. The metric system of measurement is receiving increased use throughout the United States because of its value as an international form of scientific communication. Therefore, the U.S. Geological Survey recently has adopted the system for reporting all water-quality data. Where only one number is shown, it is milligrams per liter.

^{2.} Salinity hazard is based on specific conductance (in micromhos) as follows: 0-750, low hazard (L; water suitable for almost all applications); 750-1,500, medium (M, can be detrimental to sensitive crops); 1,500-3,000, high (H; can be detrimental to many crops); 3,000-7,500, very high (V; should be used only medium (M, can be detrimental to sensitive crops); 1,500-3,000, high (H; can be detrimental to many crops); 3,000-7,500, very high (V; should be used only medium (M, can be detrimental to many crops); 3,000-7,500, very high (V; should be used only medium (M) basis of reported dissolved-solids for tolerant plants on permeable soils); >7,500, unsuitable (U). Salinity hazards for some analyses are estimated on basis of reported dissolved-solids for tolerant plants on permeable soils); >7,500, unsuitable (U). Salinity hazards on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on soil-drainage characteristics. SAR is calcu-content. SAR (sodium adsorption ratio) provides an indication of what effect an i

^{3.} Analysts: G, U.S. Geol. Survey; C, Cook Research Lab.; H, Abbot A. Hanks, Inc.; M, Morse Laboratories; N, Nevada State Health Div.; R, U.S. Bur. Reclamation.

^{4.} Computed as the milliequivalent-per-liter difference between the determined negative and positive ions; expressed as sodium (the concentration of sodium generally is at least 10 times that of potassium). Computation assumes that concentrations of undetermined negative ions—especially nitrate—are small.

^{5.} Known or assumed to be residue on evaporation at 105°C, except where followed by "c" that indicates computed sum (with bicarbonate multiplied by 0.492 to make result comparable with residue values).

a. Detailed laboratory analysis; additional determinations are listed in part B of this table.